
ICT393
Advanced Business Analysis

and Design

Topic 2

Agile Development Methodologies

Readings and Resources

• Fowler, M. (2005) The New Methodology.
Available from:
http://www.martinfowler.com/articles/newMetho
dology.html

• James, M. and Walter, L. (2017) Scrum
Reference Card. Available from
https://www.collab.net/sites/default/files/upload
s/CollabNet_scrumreferencecard.pdf

• Online video: Introduction to SCRUM. Available
from:
http://scrumtrainingseries.com/Intro_to_Scrum
/index.html

http://www.martinfowler.com/articles/newMethodology.html
https://www.collab.net/sites/default/files/uploads/CollabNet_scrumreferencecard.pdf
http://scrumtrainingseries.com/Intro_to_Scrum/index.html

Learning Objectives

After completing this topic you should be able to:

• Understand what agile development is

• Describe how agile development approaches
relate to traditional system development
methodologies

• Discuss the potential problems with agile
development

• Describe several examples of agile development
approaches

What is Agile Development?

Agile development refers to a group of software
development methodologies that are based on
iterative development, where requirements and
solutions evolve through collaboration between self-
organising cross functional teams.

• What are self-organising cross
functional teams?

What is Agile Development?

Characteristics of agile development include:

• A project management process that encourages
frequent inspection and adaptation

• A leadership philosophy that encourages
teamwork, self-organisation and accountability

• Development practices that allow for rapid
delivery of high-quality software

• A business approach that aligns development
with customer needs and company goals

The Agile Manifesto

http://www.agilemanifesto.org

What Makes a Method Agile?

• Incremental (small releases, rapid cycles)

• Cooperative (communications between
developers and customers)

• Straightforward (method is easy to learn
and modify, well documented)

• Adaptive (embrace changes, even at last
moment)

Examples of Agile Approaches

• Scrum

• Extreme Programming (XP)

• Agile Unified Process (AUP)

• Dynamic Systems Development Method (DSDM)

• Crystal family of methodologies

• Lean Software Development

• Internet-Speed Development (ISD)

Scrum is the most
commonly used agile
approach

CollabNet VersionOne (2019) The 13th Annual State of Agile Report.

Scrum

• A quick, adaptive, and self-organizing agile
methodology – used for software development
and more broadly for other kinds of projects

• Concentrates on the management aspects of
software development. Development is divided
into iterations called sprints (often 2 to 4 weeks)

• Focuses primarily on the team level - team exerts
total control over its own organisation and work
processes

• Uses a product backlog as the basic control
mechanism - prioritised list of user requirements
used to choose work to be done during a Scrum
project

Scrum Organisation

Main roles include:

• Product owner:

o The client stakeholder for whom a system is
being built

o Maintains the product backlog list

• Scrum master (c.f. project manager) - person in
charge of a Scrum project

• Scrum team or teams:

o Small group of developers (approx 7)

o Set their own goals and distribute work among
themselves

Scrum Practices

• Sprint

o The basic work process in Scrum

o A time-controlled mini-project

o Firm time box with a specific goal or deliverable

• Parts of a sprint

o Begins with a one-day planning session

o A short daily Scrum meeting to report progress

o Ends with a final half-day review

NOTE: See James and Walter (2017) for more detail

Scrum Development
Process

Scrum Use at Murdoch

Extreme Programming (XP)

• XP has been a popular agile methodology

• It takes proven industry best practices and
focuses on them intensely and combines them in
a new way

• XP has 5 values:
o Communication - with open, frequent verbal

discussions
o Simplicity - in designing and implementing

solutions
o Feedback - on functionality, requirements, designs

and code
o Courage - in facing choices such as throwing away

bad code or standing up to a too-tight schedule
o Respect

Some XP Practices

• Planning - users develop a set of stories (called
user stories) to describe what the system needs
to do

• Testing - tests are written before solutions are
implemented

• Pair programming - 2 programmers work
together on designing, coding, and testing

• Simple designs - “KISS” and design continuously

User Stories

• User stories serve the same purpose as use cases.
They are used instead of a large requirements
document

• User stories are written by customers to describe
the things the system needs to do for them

• They are used to create time estimates for release
planning

• They are in the format of several sentences of
text written by the customer in the customer’s
terminology: E.g. As <persona> , I want
<what?> so that <why?>

User Story Example

• As a sales representative, I want to search for
my customers by their first and last name so
that I have maximum flexibility

Question: What would be a user story in this
format for students buying parking permits?

Pair Programming

Adams, S. (2003) [Cartoon] Retrieved from:
http://dilbert.com/strip/2003-01-09

Some XP Practices (ctd)

• Refactoring - improving code without changing
what it does

• Owning the code collectively - anyone can
modify any piece of code

Question: What are the possible negative
implications of this practice?

• Continuous integration - small pieces of code are
integrated into the system daily or more often

• System metaphor - guides members towards a
vision of the system

Some XP Practices (ctd)

• On-site customer - intensive user/customer
interaction required

• Small releases - produce small and frequent
releases to user/customer

• Forty-hour work week - project should be
managed to avoid burnout

• Coding standards - follow coding standards to
ensure consistency and ease of refactoring

XP Project Activities

• System-level activities:

o Occur once during each development project
o Involve creating user stories and planning

releases

• Release-level activities:
o Cycle multiple times – once for each release
o Releases are developed and tested in a period

of no more than a few weeks or months

• Iteration-level activities:
o Code and test a specific functional subset in a

few days or weeks

XP
Development
Approach

Possible Limitations of Agile
Approaches

Agile approaches provide limited support for:

• Projects with distributed development teams and
resources - the emphasis on co-location and
face-to-face communication doesn’t fit well with
distributed projects

• Outsourcing – as outsourcing of software
development tasks is often based on contracts
that precisely stipulate what is required

• Projects involving large teams - management
processes tailored for small teams. May be
communication problems

Possible Limitations of Agile

Approaches (ctd)

Limited support for:

• Building or using reusable artifacts - focus on
building software to solve specific problems
rather than generalised solutions

• Development of large software systems -
assumption that code refactoring removes need
to design for change may not hold for large
complex systems

• Development of safety-critical software systems
- quality control processes haven’t been shown
to be adequate

Agile Project Success Rates

Size Approach Successful Challenged Failed

All
Agile 39% 52% 9%

Waterfall 11% 60% 20%

Large
Agile 18% 59% 23%

Waterfall 3% 55% 42%

Medium
Agile 27% 62% 11%

Waterfall 7% 68% 25%

Small
Agile 58% 38% 4%

Waterfall 44% 45% 11%

Source: https://www.infoq.com/articles/standish-chaos-2015

What do these Chaos Report figures suggest
about the value of agile development
approaches?

https://www.infoq.com/articles/standish-chaos-2015

Project Management and
Agile Approaches

Project management of adaptive approaches differs
from project management of traditional
approaches. Consider the differences in some of the
main areas of project management:
• Project time management

o Smaller scope and focused on each iteration
o More realistic work schedules

• Project scope management
o Users and clients are more responsible for scope
o Scope control consists of controlling the number of

iterations

• Project cost management
o More difficult to predict because of unknowns

Project Management (ctd)

• Project communication management
o Critical because of open verbal communication

and collaborative work

• Project quality management
o Continual testing and refactoring must be

scheduled

• Project risk management
o High-risk aspects usually addressed in early

iterations

• Project human resource management
o Teams organise themselves

Question

• Many organisations are attempting to use
both traditional approaches and agile
approaches

• Why do you think this is so? What
benefits do you think organisations
can obtain from allowing different
development approaches to co-exist?
What problems do you think can
arise?

Learning Objectives
Revisited

• What are the characteristics of agile
development?

• How do agile development approaches differ
from traditional system development
methodologies?

• What are the potential problems with agile
development?

• Can you describe several different agile
development approaches?

Additional References

• CollabNet VersionOne (2019) The 13th Annual State of Agile
Report. Available from https://www.stateofagile.com/#ufh-i-
521251909-13th-annual-state-of-agile-report/473508

• Turk, D., France, R., & Rumpe, B. (2002). Limitations of agile
software process. In Proceedings of the Third International
Conference on eXtreme Programming and Agile Processes in
Software Engineering (pp. 43-46) Sardina, Italy.
http://www4.in.tum.de/publ/papers/XP02.Limitations.pdf

• Vinekar, V., Slinkman, C. W., & Nerur, S. (2006). Can agile and
traditional systems development approaches coexist? An
ambidextrous view. Information Systems Management, 23(3), 31-
42.

• Williams, L. (2012) What agile teams think of agile principles.
Communications of the ACM 55(4), 71-76

https://www.stateofagile.com/#ufh-i-521251909-13th-annual-state-of-agile-report/473508
http://www4.in.tum.de/publ/papers/XP02.Limitations.pdf

